Suchen

Forschung

Gummiringe dichten früher ab als gedacht

| Redakteur: Jan Vollmuth

Simulationen auf Jülicher Superrechnern zeigen: Gummiringe und andere Dichtungen schließen theoretisch eher dicht ab, als bisher gedacht. Sobald ihre Oberfläche zu mehr als 42 % von dem anliegenden Anschlussstück kontaktiert wird, tritt keine Flüssigkeit mehr aus.

Firmen zum Thema

Simulation der Kontaktstellen von Dichtung und Anschlussstück, durch die Lücken zwischen den beiden Oberflächen kann Flüssigkeit ausströmen.
Simulation der Kontaktstellen von Dichtung und Anschlussstück, durch die Lücken zwischen den beiden Oberflächen kann Flüssigkeit ausströmen.
( Bild: M. Müser/Universität des Saarlandes )

Dichtungen erfüllen eine wichtige Funktion in allen möglichen Geräten, vom Raumschiff bis zum Wasserhahn. Die geläufigste Form besteht aus einem Gummiring und zwei festen Anschlussteilen. Wie gut Flüssigkeiten zurückgehalten werden, hängt in erster Linie davon ab, wie eng die Dichtung anliegt. Da alle Oberflächen auf mikroskopischer Ebene uneben und rau sind, liegen Dichtungsring und Anschlussstück nie völlig lückenlos aufeinander. In die kleinen Poren und Kanäle an der Kontaktstelle dringt Flüssigkeit ein, die über nach draußen durchgehende Wege austritt.

Forscher ermöglichen besseres Verständnis von Dichtungs-Leckagen

Verhindern lässt sich das, indem man die Dichtung fester anzieht. Das elastische Gummi wird dann in die mikroskopischen Unebenheiten gepresst, die Kontaktfläche vergrößert sich und verschließt mehr Lücken, sodass weniger Flüssigkeit entweicht.

Mit ihrer Arbeit, deren Ergebnisse in den Physical Review Letters veröffentlicht wurden, tragen Wissenschaftler vom Forschungszentrum Jülich und der Universität des Saarlandes dazu bei, besser zu verstehen, was passiert, wenn eine Dichtung leckt. Theoretische Modelle konnten die Zusammenhänge bisher nur unzureichend beschreiben. Ältere Modelle vernachlässigten die Elastizität des Dichtungsmaterials, anders als die aktuelle Theorie von Bo N. J. Persson, einem Mitautor der Studie aus dem Jülicher Peter Grünberg Institut.

Simulationen von Dichtungen übertreffen experimentelle Forschung

Diese enthielt allerdings einige nicht bestätigte Annahmen: „Die Vorhersagen waren besser, als sie sein sollten“, berichtet Prof. Martin Müser, Leiter des Lehrstuhls für Materialsimulation der Universität des Saarlandes und der Forschungsgruppe „Computational Materials Physics“ im John von Neumann-Institut für Computing am Forschungszentrum Jülich. „Mit den Simulationen wollten wir die Vorgänge auf mikroskopischer Ebene besser verstehen, als es experimentell möglich ist.“

Überraschenderweise müssen sich demnach nur 42 % der Oberflächen von Dichtung und Anschlussstück direkt berühren, um die Verbindung undurchlässig abzuschließen – und nicht 50 %, wie von bisherigen Theorien vorhergesagt. Grund dafür ist in erster Linie eine präzisere Ermittlung der Kontaktfläche. Die Forscher hatten erstmals die Elastizität des Dichtungsmaterials in die Computersimulationen miteinbezogen. Dabei zeigte sich: Mikroskopisch kleine Erhöhungen der Oberfläche, die in das weiche Gummi gepresst werden, berühren die Dichtung nicht vollständig, sondern lassen weitere kleine Lücken entstehen.

Das Ergebnis könnten dazu beitragen, die Durchlässigkeit von alternden Dichtungen besser einzuschätzen. Die Jülicher Forschungsgruppe arbeitet bereits mit einem Unternehmen aus der Medizintechnik zusammen, um die Leckrate von Gummistopfen für Spritzen zu berechnen.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 37481260)

Transfluid; Archiv: Vogel Business Media; Bild: Transfluid; Bild: Itasse; ; Bild: M. Müser/Universität des Saarlandes; Design Tech; VBM; Prima Power; Schuler; Mack Brooks; Schall; BVS; Bomar; Microstep; Kjellberg Finsterwalde; J.Schmalz; Geiss; Hypertherm; ©natali_mis - stock.adobe.com; Dillinger; Tata Steel; IKT; Schöller Werk; Vollmer; Mewa; © momius - Fotolia; Rhodius; Deutsche Fachpresse; Vogel Communications Group ; MPA Stuttgart; Gesellschaft für Wolfram Industrie