Warmumformung

Die Umformung mit Schallwellen verfolgen

Seite: 3/3

Anbieter zum Thema

Die Resonanzfrequenzen und die resultierenden Halbwertsbreiten [2] zeigen ebenfalls eine starke Beeinflussung durch die im akustischen Auswertebereich vorliegenden mechanischen Kennwerte und somit der Mikrostruktur. Die kurze Kontaktzeit zwischen Werkstück und Werkzeug bewirkt einen schmalen Resonanzpeak, was durch die Halbwertsbreite ausgedrückt wird. Die Kühlstrategie hat keinen Einfluss auf die Halbwertsbreite. Aufgrund gleicher Oberflächenhärten aber unterschiedlicher Eindringtiefen weisen die Umformprozesse mit längeren Kontaktzeiten unterschiedliche Halbwertsbreiten auf.

Akustische Kamera in Schallreflexion reduzierenden Messkammer integriert

Die akustische Kamera ist in einer Schallreflexion-reduzierenden Messkammer zur Schwingungsuntersuchung integriert (Bild 5). Durch eine differenzielle thermo-mechanische Prozessführung bei der Massivumformung können bei den Bauteilen gradierte Eigenschaften bei gleichzeitig komplexer Geometrie eingestellt werden. Die erhöhte Reproduzierbarkeit durch die Automatisierung des experimentellen Ablaufs eröffnet die Möglichkeit der vertieften Untersuchung von einzelnen Prozessparametern und ihres Einflusses auf den Prozess. So wird die funktionale Gradierung über die Wahl der Erwärmungsbedingungen und der Abkühlstrategie durch ihren Einfluss auf die Steuerung der Phasenumwandlung erzeugt.

Bildergalerie
Bildergalerie mit 6 Bildern

Beide Prozessschritte beeinflussen sich im Hinblick auf die Endeigenschaftsverteilung, sie können jedoch unabhängig voneinander variiert werden. Durch die geeignete Wahl der Prozessparameter bei Erwärmung und Abkühlung lassen sich Bauteile mit einer funktionalen Eigenschaftsverteilung in nur einem Pressenhub erzeugen.

Die ursprünglich ausschließlich zur Ortung von Schallquellen ausgelegte akustische Kamera lässt sich bedingungslos auf eine Überprüfung der erzielten Mikrostruktur übertragen. Nach der mechanischen Erzeugung des akustischen Signals und dessen Auswertung können zum einen die Form der Hüllkurve und zum anderen die Ermittlung der Schwingungsresonanzen sowie der zugehörigen Halbwertsbreiten für beliebige Punkte des Bauteils bestimmt werden. Hiermit eröffnen sich völlig neuartige Methoden zur zerstörungsfreien und berührungslosen Detektion von lokal differenzierten Materialeigenschaften innerhalb eines Bauteils.

Die Ergebnisse basieren auf Untersuchungen des Sonderforschungsbereiches SFB/TR TRR 30, welcher von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Das Testmaterial wurde von der Georgsmarienhütte GmbH bereitgestellt.

Literatur:

  • [1] Steinhoff, K.; Weidig, U.; Scholtes, B.; Zinn, W.: Innovative Flexible Metal Forming Processes Based on Hybrid Thermo-Mechanical Interaction. steel research int., 76 (2005) 2/3, pp. 154-159.
  • [2] Bert, C. W.: Material Damping: An introductory review of mathematic measures and experimental techniques. J. Sound Vibrat., 29 (1973) 2, pp. 129-153.

Dipl.-Ing. Manuel Maikranz-Valentin ist wissenschaftlicher Mitarbeiter am Lehrstuhl für Umformtechnik der Universität Kassel. Prof. Dr.-Ing. Kurt Steinhoff ist Ordinarius des Lehrstuhls, Dipl.-Ing. Joachim Feierabend verantwortet den Vertrieb Akustische Kamera der Gfai Tech GmbH. Dr. rer. nat. Jürgen Göken ist Arbeitsgruppenleiter mechanische Spektroskopie der Fachhochschule Oldenburg, Ostfriesland, Wilhelmshaven.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung

(ID:279063)